FRIB In the News

Statisticians and physicists team up to bring a machine learning approach to mining of nuclear data

, U.S. Department of Energy Office of Science

The U.S. Department of Energy Office of Science (DOE-SC) posted a highlight titled “Statisticians and physicists team up to bring a machine learning approach to mining of nuclear data” about how Bayesian statistical methods help improve the predictability of complex computational models in experimentally unknown research. The authors of the publication are from FRIB and Skidmore College. Each year, scientists publish thousands of research findings in the scientific literature. About 200 of these are selected annually by their respective program areas in DOE-SC as publication highlights of special note.

FRIB finds five new isotopes in platinum fragments

, Physics World

By colliding heavy ions, physicists at the Facility for Rare Isotope Beams in the United States have created five previously unseen nuclear isotopes. Led by Oleg Tarasov at Michigan State University, the team identified the nuclei in the debris produced by the fragmentation of platinum-198.

The ‘nested doll’ nucleus nitrogen-9 stretches the definition of a nucleus to the limit

, U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE

The U.S. Department of Energy Office of Science (DOE-SC) posted a highlight titled “The ‘nested doll’ nucleus nitrogen-9 stretches the definition of a nucleus to the limit.” In a recent study, scientists from Washington University in St. Louis, Fudan University in China, Western Michigan University, the University of Connecticut, the Chinese Academy of Sciences, and FRIB present strong evidence for a new light isotope of nitrogen: nitrogen-9, an isotope that is overladen with protons. Each year, scientists publish thousands of research findings in the scientific literature. About 200 of these are selected annually by their respective program areas in DOE-SC as publication highlights of special note.

Weird lab-made atoms hint at heavy metals’ cosmic origins

, Scientific American

Scientists at the Facility for Rare Isotope Beams have created new extraheavy versions of three silvery metals in an advance that could lead to better understanding of how some elements are forged in stars. None of these five isotopes has ever been created before—at least, not on Earth.

Scientists create 5 new isotopes to learn how neutron star collisions forge gold

, Space.com via Yahoo! News

Researchers have synthesized five new isotopes that could help bring the stars down to Earth — and coax scientists a step closer to understanding how collisions between ultra-dense, dead stars could create heavy elements like gold and silver. Their creation took place at the Facility for Rare Isotope Beams (FRIB) at Michigan State University, and represents a step towards building atoms on Earth that are typically only created in the ultra-turbulent environment around merging dead stars known as neutron stars.